• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
谢益均, 缪裕青, 邵其武, 高韩, 文益民. 概念漂移数据流中可探测新颖类别的分类算法[J]. 桂林电子科技大学学报, 2015, 35(6): 459-465.
引用本文: 谢益均, 缪裕青, 邵其武, 高韩, 文益民. 概念漂移数据流中可探测新颖类别的分类算法[J]. 桂林电子科技大学学报, 2015, 35(6): 459-465.
Xie Yijun, Miao Yuqing, Shao Qiwu, Gao Han, Wen Yimin. A classification algorithm for novel class detection based on data stream with concept-drift[J]. Journal of Guilin University of Electronic Technology, 2015, 35(6): 459-465.
Citation: Xie Yijun, Miao Yuqing, Shao Qiwu, Gao Han, Wen Yimin. A classification algorithm for novel class detection based on data stream with concept-drift[J]. Journal of Guilin University of Electronic Technology, 2015, 35(6): 459-465.

概念漂移数据流中可探测新颖类别的分类算法

A classification algorithm for novel class detection based on data stream with concept-drift

  • 摘要: 针对可探测新颖类别的框架将数据流分成固定大小的数据块,导致新颖类别探测的准确率较低和处理速率较慢,且均假定数据对象所有属性具有相同的权重不符合实际情况的问题,提出一种在概念漂移数据流中探测新颖类别的分类算法(DNCS)。该算法通过周期检测滑动窗口中的数据分布,依据其变化动态调整数据块大小,以此更新分类模型,以适应新的数据变化。该算法框架使用基于属性权重的聚类算法作为探测新颖类别的基本步骤。实验结果表明,该算法具有更高的新颖类别探测精度和处理速率。

     

    Abstract: The most existing frameworks of novel class detection have low novel class detection accuracy and slow processing rate for dividing the data stream into fixed-size chunks, and it is not realistic that all the attributes of data objects have the same weight in the existing framework, a classification algorithm for novel class detection based on data stream with concept-drift(DNCS) is proposed. The algorithm periodically detects the data distribution in the sliding window, dynamically changes the size of the chunk and updates the model to adapt to the novel data. The improved algorithm makes the clustering algorithm based on attribute weight the basic step for detecting novel class. The experimental results show that DNCS has higher novel class detection accuracy and processing speed.

     

/

返回文章
返回