• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
郭棚跃, 刘振丙. 一种基于栈式压缩自编码的高光谱图像分类方法[J]. 桂林电子科技大学学报, 2021, 41(4): 298-304.
引用本文: 郭棚跃, 刘振丙. 一种基于栈式压缩自编码的高光谱图像分类方法[J]. 桂林电子科技大学学报, 2021, 41(4): 298-304.
GUO Pengyue, LIU Zhenbing. A method based on stacked contractive autoencoder for hyperspectral image classification[J]. Journal of Guilin University of Electronic Technology, 2021, 41(4): 298-304.
Citation: GUO Pengyue, LIU Zhenbing. A method based on stacked contractive autoencoder for hyperspectral image classification[J]. Journal of Guilin University of Electronic Technology, 2021, 41(4): 298-304.

一种基于栈式压缩自编码的高光谱图像分类方法

A method based on stacked contractive autoencoder for hyperspectral image classification

  • 摘要: 针对高光谱图像传统分类方法精度低、模型稳定性差而深度学习模型时间消耗大、计算成本高的问题,充分考虑高光谱图像的光谱信息和空间信息,提出了一种基于栈式压缩自编码的高光谱图像分类方法。将提取的邻域空间信息与待分类像素点的光谱信息融合,利用栈式压缩自编码提取融合后信息的深层特征,再利用逻辑回归确定高光谱图像中各像素点的类别。该方法在Indian Pines和Pavia University数据集上的总体分类精度分别达到了89.943%、93.949%。相比其他方法,该方法分类性能更优,可用于高光谱图像分类。

     

    Abstract: Aiming at the problem of low accuracy, poor model stability, time consumption of deep learning model and high computational cost of traditional hyperspectral image classification methods, fully considers the spectral information and spatial information of HSI, a method is proposed based on the stacked contractive autoencoder (SCAE). Extracted spatial information is fused with the spectral information of the unclassified pixel. SCAE was used to extract the deep features of the fused information. Logistic regression (LR) was used to determine the categories of each pixel in the HIS. Compared with the existing methods on Indian Pines, Pavia University datasets, the results show that the method proposed in the paper has achieved overall accuracy of 89.943%, 93.949% on the two datasets respectively, and with better classification performance.

     

/

返回文章
返回