• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
张致远, 刘建明, 陈振舜. 基于C4.5决策树的VoIP实时检测系统[J]. 桂林电子科技大学学报, 2018, 38(6): 453-458.
引用本文: 张致远, 刘建明, 陈振舜. 基于C4.5决策树的VoIP实时检测系统[J]. 桂林电子科技大学学报, 2018, 38(6): 453-458.
ZHANG Zhiyuan, LIU Jianming, CHEN Zhenshun. Real-time VoIP monitoring system based on C4.5 decision tree[J]. Journal of Guilin University of Electronic Technology, 2018, 38(6): 453-458.
Citation: ZHANG Zhiyuan, LIU Jianming, CHEN Zhenshun. Real-time VoIP monitoring system based on C4.5 decision tree[J]. Journal of Guilin University of Electronic Technology, 2018, 38(6): 453-458.

基于C4.5决策树的VoIP实时检测系统

Real-time VoIP monitoring system based on C4.5 decision tree

  • 摘要: 针对VoIP应用程序实时检测困难的问题,提出基于C4.5决策树的VoIP实时检测系统。采用按时间平均分流的规则进行特征提取,通过基于C4.5决策树算法建立的分类模型和基于Jpcap库的实时抓包检测机制,设计并实现了识别精度高、实时性强的VoIP流量检测系统。实验结果表明,在保证精度和实时性的前提下,该系统能够识别超过一种VoIP应用程序,识别时间仅需115 ms,精度超过93%。

     

    Abstract: Aiming at the difficulty of real-time detection of VoIP applications, feature extraction is performed using a time-averaged shunting rule, a classification model based on C4.5 decision tree algorithm, and a real-time packet capture detection mechanism based on Jpcap library are used to design and implement the recognition. High-precision, real-time VoIP traffic detection system. Experimental results show that under the premise of accuracy and real-time performance, the system can identify more than one kind of VoIP application program, the identification time is only 115 ms, and the accuracy is over 93%.

     

/

返回文章
返回