• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
梁晓曦, 蔡晓东, 库浩华, 王萌. 基于双重加强特征的人脸年龄估计方法[J]. 桂林电子科技大学学报, 2019, 39(1): 71-75.
引用本文: 梁晓曦, 蔡晓东, 库浩华, 王萌. 基于双重加强特征的人脸年龄估计方法[J]. 桂林电子科技大学学报, 2019, 39(1): 71-75.
LIANG Xiaoxi, CAI Xiaodong, KU Haohua, WANG Meng. Facial age estimation method based on double-enhanced features[J]. Journal of Guilin University of Electronic Technology, 2019, 39(1): 71-75.
Citation: LIANG Xiaoxi, CAI Xiaodong, KU Haohua, WANG Meng. Facial age estimation method based on double-enhanced features[J]. Journal of Guilin University of Electronic Technology, 2019, 39(1): 71-75.

基于双重加强特征的人脸年龄估计方法

Facial age estimation method based on double-enhanced features

  • 摘要: 为了解决年龄估计任务中很多方法仅考虑全局特征而忽略关键性的局部特征的问题,提出一种基于双重加强特征的人脸年龄估计方法。根据人脸关键点的位置对人脸图片进行裁剪分块,提取出眼睛、鼻子、嘴巴3个包含了与年龄相关的特征(比如眼纹、法令纹、胡子等)的局部区域,而这些局部区域可以在已有的全局特征基础上加强关键性的局部特征信息。将局部区域图片和整张图片联合起来输入基于压缩激励的并联残差网络中,该网络能够通过特征重标定的方法进一步加强有用的特征并抑制用处不大的特征。把多个不同子区域年龄估计结果结合起来作为最终的年龄预测值。实验表明,该方法中所采用的全局特征结合局部特征进行年龄估计的方法好于仅使用全局特征来判断年龄。相比于其他方法,该方法具有较低的平均绝对误差,且复杂度较低。

     

    Abstract: Many methods only consider global but not key local features in age estimation tasks. A facial age estimation method based on double-enhanced features is proposed. Facial images are partitioned according to the location of the key points. Three local areas including eye, nose and mouth containing age related features (such as eye wrinkles, nasolabial folds, moustache and so on) are obtained. These local regions can enhance key local feature information on the basis of global features. The local area and the whole image are combined as the input of the parallel residual network based on the squeeze and excitation. The network further enhances the useful features and suppress those non-related ones by feature re-calibration. The estimated results of multiple sub-regions are combined as the final output. Experimental results indicate that the age estimation using global and local features outperforms those use global features only. The proposed method provides lower mean absolute error and computational complexity compared with others.

     

/

返回文章
返回