• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
黄新, 沈英超. 基于深度学习的疲劳驾驶检测方法[J]. 桂林电子科技大学学报, 2020, 40(3): 201-206.
引用本文: 黄新, 沈英超. 基于深度学习的疲劳驾驶检测方法[J]. 桂林电子科技大学学报, 2020, 40(3): 201-206.
HUANG Xin, SHEN Yingchao. Fatigue driving detection method based on deep learning[J]. Journal of Guilin University of Electronic Technology, 2020, 40(3): 201-206.
Citation: HUANG Xin, SHEN Yingchao. Fatigue driving detection method based on deep learning[J]. Journal of Guilin University of Electronic Technology, 2020, 40(3): 201-206.

基于深度学习的疲劳驾驶检测方法

Fatigue driving detection method based on deep learning

  • 摘要: 针对现有疲劳驾驶检测方法实时性差和准确率低的问题,提出一种基于深度学习的疲劳驾驶检测方法。通过深度学习模型MTCNN实现人脸检测; 针对眼睛定位易受遮挡、姿势变化等因素影响的问题,通过眼睛精定位(FEL)模型精确提取眼睛区域,并通过OC-Net网络判定眼睛状态; 基于PERCLOS算法和眨眼频率对驾驶员进行疲劳判定。实验结果表明,该方法的疲劳状态检测准确率为97.18%,同时满足实时性要求,且对复杂环境具有较高的鲁棒性。

     

    Abstract: A fatigue driving detection methods based on deep learning is proposed to solve the problem of poor real-time performance and low accuracy of existing fatigue driving detection methods.Firstly, the face detection is realized by the deep learning model MTCNN.Secondly, on account of the eyes positioning is vulnerable to occlusion, posture changes and other factors, a Fine Eyes Location(FEL) model is proposed to extract the eyes region accurately and determine eyes status through OC-Net network.Finally, driver fatigue is judged based on PERCLOS algorithm and blink frequency.The experimental results show that the accuracy of the fatigue state detection achieved by this method is 97.18% and real-time requirements, and also has high robustness to complex environments.

     

/

返回文章
返回