• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
莫建文, 徐凯亮. 结合皮尔逊重构的文本到图像生成模型[J]. 桂林电子科技大学学报, 2020, 40(1): 54-61.
引用本文: 莫建文, 徐凯亮. 结合皮尔逊重构的文本到图像生成模型[J]. 桂林电子科技大学学报, 2020, 40(1): 54-61.
MO Jianwen, XU Kailiang. Text-to-image generation model combined with Pearson reconstruction[J]. Journal of Guilin University of Electronic Technology, 2020, 40(1): 54-61.
Citation: MO Jianwen, XU Kailiang. Text-to-image generation model combined with Pearson reconstruction[J]. Journal of Guilin University of Electronic Technology, 2020, 40(1): 54-61.

结合皮尔逊重构的文本到图像生成模型

Text-to-image generation model combined with Pearson reconstruction

  • 摘要: 针对堆叠式生成对抗网络中生成样本细节表述质量不高, 多样性不足的问题, 提出一种结合最大化皮尔逊相关系数的文本到图像生成模型。该模型通过改进判别器, 使其能进行编码和判别, 利用判别器对生成样本进行特征提取, 计算输入向量与特征向量之间的皮尔逊相关系数, 并将其作为重构项加入损失中进行最大化优化。另外, 为增强不同尺度生成样本间的编码一致性, 提出了多尺度联合损失。在CUB数据集上的实验验证了该方法能有效提高生成样本的多样性和图像质量。

     

    Abstract: Aiming at the problem of low quality and insufficient diversity of the generated sample details of the stacked generation confrontation network, a text-to-image generation model combining maximum Pearson correlation coefficients is proposed.The method improves the discriminator so that it can be encoded and discriminated, then uses the discriminator to extract the feature from the generated sample, and calculates the Pearson correlation coefficient between the input vector and the feature vector and adds it as a reconstruction term to the loss.Maximize optimization.In addition, in order to enhance the coding consistency between samples generated at different scales, multi-scale joint loss is proposed.Experiments on the CUB dataset demonstrate that the proposed method can effectively improve the diversity and image quality of the generated samples.

     

/

返回文章
返回