• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
宋晨菲, 张彤. 基于重要性采样的广义霍夫变换算法[J]. 桂林电子科技大学学报, 2020, 40(5): 405-410.
引用本文: 宋晨菲, 张彤. 基于重要性采样的广义霍夫变换算法[J]. 桂林电子科技大学学报, 2020, 40(5): 405-410.
SONG Chenfei, ZHANG Tong. Generalized hough transform algorithm based on importance sampling[J]. Journal of Guilin University of Electronic Technology, 2020, 40(5): 405-410.
Citation: SONG Chenfei, ZHANG Tong. Generalized hough transform algorithm based on importance sampling[J]. Journal of Guilin University of Electronic Technology, 2020, 40(5): 405-410.

基于重要性采样的广义霍夫变换算法

Generalized hough transform algorithm based on importance sampling

  • 摘要: 针对物体检测中传统广义霍夫变换算法计算量大、效率低以及基于特征匹配算法对于放缩旋转图像的误检问题, 提出一种基于重要性采样的广义霍夫变换算法。将广义霍夫变换置于重要性采样框架中, 边缘点根据显著性度量值筛选, 作为广义霍夫变换的投票元素, 并采用加权多分辨率分析方法, 极大地减少了计算量。通过多种实验(放缩、旋转、加噪、遮挡等)与其他相似方法进行对比, 结果表明, 该算法检测精度及效率较高。

     

    Abstract: A new generalized hough transform algorithm based on importance sampling framework is proposed to solve the problem of large computation and low efficiency of traditional generalized Hough transform algorithm in object detection and the problem of false detection based on feature matching algorithm for zoom and rotate images.The generalized Hough transform is placed in the importance sampling frame, the edge points are filtered according to the significance measurement value, and are taken as the voting elements of the generalized hough transform.And the weighted multi-resolution analysis method is adopted to greatly reduce the computation.Through a variety of experiments (shrinkage, rotation, noise, shielding, etc.) and comparison with other similar methods, it is verified from the theoretical basis and concrete implementation that the method has higher efficiency and better accuracy, and can meet the real-time and high precision requirements in industrial detection.

     

/

返回文章
返回