• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
吴金凯, 蔡成林, 甘才军, 孙凯. 基于手机传感器的行人室内定位算法[J]. 桂林电子科技大学学报, 2019, 39(5): 379-383.
引用本文: 吴金凯, 蔡成林, 甘才军, 孙凯. 基于手机传感器的行人室内定位算法[J]. 桂林电子科技大学学报, 2019, 39(5): 379-383.
WU Jinkai, CAI Chenglin, GAN Caijun, SUN Kai. Pedestrian indoor positioning algorithm based on mobile phone sensor[J]. Journal of Guilin University of Electronic Technology, 2019, 39(5): 379-383.
Citation: WU Jinkai, CAI Chenglin, GAN Caijun, SUN Kai. Pedestrian indoor positioning algorithm based on mobile phone sensor[J]. Journal of Guilin University of Electronic Technology, 2019, 39(5): 379-383.

基于手机传感器的行人室内定位算法

Pedestrian indoor positioning algorithm based on mobile phone sensor

  • 摘要: 针对当前室内定位精度低、实现复杂的问题,提出了一种基于行人航迹推算(PDR)的行人室内定位算法。通过采集手机内置惯性传感器加速度计、陀螺仪和磁力计的原始数据解算用户位置,利用加速度数据解算得到行人步频和步长,四元数解算陀螺仪数据得到行人姿态航向,再利用扩展卡尔曼滤波(EKF)融合各传感器数据解算出更精确的航向信息,最后通过位置更新得到行人位置。实验结果表明,室内定位精度优于1.8%,算法不需要额外布置信标节点,具有较高的定位精度、较低的实现复杂度和较高的实用性。

     

    Abstract: Aiming at the problems of poor indoor positioning accuracy and complex implementation, a pedestrian indoor positioning algorithm based on pedestrian trajectory estimation (PDR) is proposed. The algorithm calculates user location by the raw data which is gathered by the phone built-in accelerometer of inertial sensor, gyroscope and magnetometer. It gets stride frequency and step size of pedestrian by utilizing calculation of acceleration data and acquires attitude and heading by using quaternions to solve gyroscope data.Then, it calculates the more accurate course information by utilizing extended kalman filter to blend all sensor data and finally gets pedestrian location by renewal of location. By sets of experiment, the precision of indoor position is superior to 1.8 percent. The algorithm has no need of arranging additionally beacon nodes and has higher position precision, lower complexity of realization and higher usefulness.

     

/

返回文章
返回