• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
倪伟, 蒋占四. 基于Self-Weight与t-SNE的滚动轴承故障诊断[J]. 桂林电子科技大学学报, 2022, 42(6): 463-467.
引用本文: 倪伟, 蒋占四. 基于Self-Weight与t-SNE的滚动轴承故障诊断[J]. 桂林电子科技大学学报, 2022, 42(6): 463-467.
NI Wei, JIANG Zhansi. Rolling bearing fault diagnosis based on Self-Weight and t-SNE[J]. Journal of Guilin University of Electronic Technology, 2022, 42(6): 463-467.
Citation: NI Wei, JIANG Zhansi. Rolling bearing fault diagnosis based on Self-Weight and t-SNE[J]. Journal of Guilin University of Electronic Technology, 2022, 42(6): 463-467.

基于Self-Weight与t-SNE的滚动轴承故障诊断

Rolling bearing fault diagnosis based on Self-Weight and t-SNE

  • 摘要: 针对滚动轴承故障信号非线性、故障特征种类繁多难以准确分类的问题, 提出了一种Self-Weigh与t-SNE相结合的解决方法。先用WPT完成对原始故障信号的处理及特征的提取, 然后采用Self-Weigh评估每个特征的敏感程度, 获取最优特征; 再对这些最优特征通过t-SNE进行降维可视化处理, 获取低维敏感特征, 并将其作为AP传播聚类的输入, 从而实现故障类型100%正确识别。采用机械综合模拟实验平台的轴承数据加以验证, 并与采用t-SNE、Self-Weigh+PCA方法进行对比, 结果体现了所提方法的优势。

     

    Abstract: In order to solve the problem that the fault signal of rolling bearing is nonlinear and the fault features are various, and it is difficult to classify accurately, a method combining Self-Weight feature selection with t-SNE algorithm is proposed. Firstly, WPT is used to process the original fault signal and extract the features. Then Self-Weight is used to evaluate the sensitivity of each feature to obtain the optimal feature. Then, these optimal features are visualized by t-SNE to obtain low dimensional sensitive features, which are used as the input of affine propagation clustering (AP) to achieve 100% accuracy of fault type identification. The results are verified by the bearing data of the MFS-MG, Compared with t-SNE without feature selection and Self-Weight + PCA, the results show the advantages of the proposed method.

     

/

返回文章
返回