• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
马星, 王守华, 尤志奇, 吴桐桐, 孙希延. 基于匹配优化与距离辅助的Wi-Fi定位算法[J]. 桂林电子科技大学学报, 2023, 43(2): 114-119.
引用本文: 马星, 王守华, 尤志奇, 吴桐桐, 孙希延. 基于匹配优化与距离辅助的Wi-Fi定位算法[J]. 桂林电子科技大学学报, 2023, 43(2): 114-119.
MA Xing, WANG Shouhua, YOU Zhiqi, WU Tongtong, SUN Xiyan. Wi-Fi location algorithm based on matching optimization and distance assistance[J]. Journal of Guilin University of Electronic Technology, 2023, 43(2): 114-119.
Citation: MA Xing, WANG Shouhua, YOU Zhiqi, WU Tongtong, SUN Xiyan. Wi-Fi location algorithm based on matching optimization and distance assistance[J]. Journal of Guilin University of Electronic Technology, 2023, 43(2): 114-119.

基于匹配优化与距离辅助的Wi-Fi定位算法

Wi-Fi location algorithm based on matching optimization and distance assistance

  • 摘要: 针对排序聚类定位算法类匹配精度较低,且用于位置解算的指纹点中存在异常指纹点的问题,提出一种匹配优化与距离辅助的Wi-Fi定位算法。根据用户前后位置、距离和步长,设计了一种类匹配偏差检测模型,用来判断用户位置异常和匹配偏差;将排序后的接收信号强度向量中相邻元素作差,并与设定阈值相比较,确定待定位点排序特征向量变化位置,进行交换,以达到校正的目的,进而得到校正合并的类匹配结果;根据定位时前m时间段内所确定的用户位置与匹配类中指纹点的距离远近,剔除用于位置解算指纹点中的异常指纹点,实现更为精确的室内定位。仿真实验结果表明,该算法类匹配精度提高了17%,平均定位精度提高了22%。

     

    Abstract: Aiming at the problem that the sorting clustering positioning algorithm has low matching accuracy, and there are abnormal fingerprint points in the fingerprint points used for position calculation, a Wi-Fi positioning algorithm with matching optimization and distance assistance is proposed. According to the user's front and back position, distance and step length, a matching deviation detection model is designed to determine the user's abnormal position and matching deviation; the adjacent elements in the sorted received signal strength vector are compared with the set threshold to determine the change position of the sorting feature vector of the point to be located, achieve the purpose of correction by exchange, and obtain the corrected and merged class matching result; according to the distance between the user's position determined in the time period m before the positioning and the fingerprint point in the matching class, the abnormal fingerprint points used for position calculation are eliminated, so as to achieve more accurate indoor positioning. The simulation results show that the class matching accuracy and the average positioning accuracy of the proposed algorithm are improved respectively by 17% and 22%.

     

/

返回文章
返回