• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
杨欣, 徐周波, 陈浦青, 刘华东. 基于图神经网络的子图匹配符号算法[J]. 桂林电子科技大学学报, 2022, 42(5): 391-397.
引用本文: 杨欣, 徐周波, 陈浦青, 刘华东. 基于图神经网络的子图匹配符号算法[J]. 桂林电子科技大学学报, 2022, 42(5): 391-397.
YANG Xin, XU Zhoubo, CHEN Puqing, LIU Huadong. Subgraph matching symbol algorithm based on graph neural network[J]. Journal of Guilin University of Electronic Technology, 2022, 42(5): 391-397.
Citation: YANG Xin, XU Zhoubo, CHEN Puqing, LIU Huadong. Subgraph matching symbol algorithm based on graph neural network[J]. Journal of Guilin University of Electronic Technology, 2022, 42(5): 391-397.

基于图神经网络的子图匹配符号算法

Subgraph matching symbol algorithm based on graph neural network

  • 摘要: 子图匹配是图数据分析中的基础问题, 具有重要的研究意义。针对子图匹配求解算法存在大量冗余搜索的问题, 提出了一种基于图神经网络的子图匹配符号算法。该算法利用图神经网络技术聚合节点的邻域信息, 得到包含图局部属性和结构的特征向量, 以该向量作为过滤条件得到查询图的节点候选集C。此外, 优化匹配顺序并利用符号ADD操作在数据图中构建C的各个候选区域, 减少了子图枚举验证过程中的冗余搜索。实验结果表明, 与VF3算法相比, 该算法有效地提高了子图匹配的求解效率。

     

    Abstract: Subgraph matching is a fundamental problem in graph data analysis and has important research significance. Aiming at the problem of a large number of redundant searches in the subgraph matching algorithm, a subgraph matching symbol algorithm based on graph neural network(SSMGNN) was proposed. The algorithm used the graph neural network technology to aggregate the neighborhood information of nodes, and obtained the feature vector containing the local attributes and structure of the graph, and used the vector as the filter condition to obtain the node candidate set C of the query graph. In addition, optimizing the matching order and using symbolic ADD operations to construct each candidate region of C in the data graph reduced redundant searches during subgraph enumeration verification. The experimental results show that, compared with the VF3 algorithm, the algorithm effectively improve the solving efficiency of subgraph matching.

     

/

返回文章
返回