• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
黄怡, 董荣胜. 基于多尺度特征融合和注意力的钢表面缺陷检测[J]. 桂林电子科技大学学报, 2022, 42(5): 398-404.
引用本文: 黄怡, 董荣胜. 基于多尺度特征融合和注意力的钢表面缺陷检测[J]. 桂林电子科技大学学报, 2022, 42(5): 398-404.
HUANG Yi, DONG Rongsheng. Steel surface defect detection based on multi-scale feature fusion and attention mechanism[J]. Journal of Guilin University of Electronic Technology, 2022, 42(5): 398-404.
Citation: HUANG Yi, DONG Rongsheng. Steel surface defect detection based on multi-scale feature fusion and attention mechanism[J]. Journal of Guilin University of Electronic Technology, 2022, 42(5): 398-404.

基于多尺度特征融合和注意力的钢表面缺陷检测

Steel surface defect detection based on multi-scale feature fusion and attention mechanism

  • 摘要: 为了解决钢表面缺陷检测存在缺陷定位和分类困难的问题, 提升钢表面缺陷检测效率, 提出一种基于多尺度特征融合和注意力机制的钢表面缺陷检测算法。该算法的模型基于编码器-解码器结构, 来实现缺陷分类和分割任务。编码器结构采用残差网络ResNet50作为骨干网络, 然后利用多尺度特征融合模块捕获丰富的多尺度空间信息。解码器结构基于全局注意力采样模块, 利用高层语义信息生成的全局上下文权重对浅层细节信息进行指导, 来实现更加精准的选取细节信息, 最后通过3×3卷积块细化分割结果, 逐渐恢复缺陷信息并进行预测。使用kaggle竞赛平台提供的钢表面缺陷数据集对算法进行实验, 缺陷检测的Dice系数能够达到94.22%, 与U-net等语义分割模型相比, 缺陷检测效果更好。

     

    Abstract: In order to solve the difficulty of defect location and classification in steel surface defect detection and improve the efficiency of steel surface defect detection, a steel surface defect detection algorithm based on multi-scale feature fusion and attention mechanism is proposed. The model of the algorithm is based on encoder-decoder structure to achieve the task of defect classification and segmentation. The encoder structure uses the residual network ResNet50 as the backbone and then uses the multi-scale feature fusion module to capture rich multi-scale spatial information. The decoder structure is based on the Global Attention Upsample module, and uses the global context weights generated by high-level semantic information to guide the shallow details to achieve more accurate selection of detailed information. Finally, the segmentation results are refined through 3×3 convolutional blocks, and gradually recover defect information and make predictions. Using the steel surface defect dataset provided by the kaggle competition platform to experiment with the algorithm, the Dice coefficient of defect detection can reach 94.22%. Compared with semantic segmentation models such as U-net, the defect detection effect is better.

     

/

返回文章
返回