• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
甘甜, 蒋华, 颜靖柯, 王慧娇. 基于DeepLabv3+的苗族服饰识别网络[J]. 桂林电子科技大学学报, 2022, 42(5): 412-422.
引用本文: 甘甜, 蒋华, 颜靖柯, 王慧娇. 基于DeepLabv3+的苗族服饰识别网络[J]. 桂林电子科技大学学报, 2022, 42(5): 412-422.
GAN Tian, JIANG Hua, YAN Jingke, WANG Huijiao. Miao costume recognition scheme based on DeepLabv3+[J]. Journal of Guilin University of Electronic Technology, 2022, 42(5): 412-422.
Citation: GAN Tian, JIANG Hua, YAN Jingke, WANG Huijiao. Miao costume recognition scheme based on DeepLabv3+[J]. Journal of Guilin University of Electronic Technology, 2022, 42(5): 412-422.

基于DeepLabv3+的苗族服饰识别网络

Miao costume recognition scheme based on DeepLabv3+

  • 摘要: 为解决基于深度学习方法在苗族服饰图像分割任务中存在特征信息丢失的问题, 设计了一种基于DeepLabv3+网络的苗族服饰识别网络Efficient-DeepLabv3+。该网络利用Mosaic数据增强, 以增加训练时图像的背景复杂程度, 使网络在不增加额外计算开销的情况下, 能够提取到更多的图像特征信息; 使用标签平滑, 以减少真实标签训练时的损失权重, 降低其在分割效果上因过拟合而产生的不良影响; 再次, 引入辅助分支结构, 使损失函数能够计算所有网络层的损失值; 提出联合损失函数计算损失值以预防梯度爆炸, 使网络训练更加稳定; 提出多级衰减余弦退火算法, 使网络训练时能够找到全局最优学习率, 加快网络的收敛速度。实验结果表明, 在苗族服饰数据集上, 平均交并比(MIoU)及类别平均像素准确率(MPA)分别达到了84.96%、93.7%, 在PASCAL VOC2012数据集上, Efficient-DeepLabv3+网络的分割效果优于其他网络。

     

    Abstract: In order to solve the problem of feature information loss in Miao apparel image segmentation based on the deep learning method, an Efficient-DeepLabv3+ network for Miao apparel recognition was designed. Firstly, Mosaic data enhancement increased the background complexity of images during training so that the network can extract more image feature information without the additional computational overhead. Secondly, label smoothing was used to reduce actual label training loss weight and reduced the adverse effects of over-fitting on the segmentation effect. Thirdly, the auxiliary branch structure was introduced so that the loss function can calculate the loss value of all network layers. In order to prevent gradient explosion and make network training more stable, a joint loss function was proposed to calculate the loss value. Finally, a multistage attenuation cosine annealing algorithm was proposed to find the global optimal learning rate and speed up the convergence of network training. The experimental results show that Mean Intersection over Union (MIoU) and category average Pixel Accuracy (MPA) reach 84.96% and 93.7%, respectively, on the Miao clothing data set. On the PASCAL VOC2012 data set, the segmentation effect of Efficient-DeepLabv3+ network is better than other networks.

     

/

返回文章
返回