• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
那万达, 张向利. 融合自注意力机制的YOLOv5交通标志检测算法[J]. 桂林电子科技大学学报, 2025, 45(1): 41-48. DOI: 10.3969/1673-808X.202315
引用本文: 那万达, 张向利. 融合自注意力机制的YOLOv5交通标志检测算法[J]. 桂林电子科技大学学报, 2025, 45(1): 41-48. DOI: 10.3969/1673-808X.202315
NA Wanda, ZHANG Xiangli. A YOLOv5 traffic sign detection algorithm of fusion self-attention mechanism[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 41-48. DOI: 10.3969/1673-808X.202315
Citation: NA Wanda, ZHANG Xiangli. A YOLOv5 traffic sign detection algorithm of fusion self-attention mechanism[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 41-48. DOI: 10.3969/1673-808X.202315

融合自注意力机制的YOLOv5交通标志检测算法

A YOLOv5 traffic sign detection algorithm of fusion self-attention mechanism

  • 摘要: 针对YOLOv5网络模型在复杂环境下对交通标志检测提取全局特征信息不足、特征融合不充分和检测效率低的问题,提出一种融合自注意力机制的YOLOv5交通标志检测算法。该算法在主干网络特征提取部分将基于自注意力机制的Swin-Transformer模块与可降低模型计算量的C3模块融合来增加特征图像之间的信息交互,以获取多尺度图像特征。模型的特征图像处理部分利用视觉Transformer模型,并结合Swin-Transformer模块进行特征图像的融合,得到待测图像的全局特征信息,提高了模型的检测精度。最后,将原有特征图像拼接方式进行赋权处理,重要交通标志特征信息可以优先检测,提高了模型的检测效率。在TT100K数据集进行测试后,最终平均检测精度均值达83.51%,相对于原始YOLOv5网络模型提高了2.50个百分点,单张特征图像检测速率提高了0.037 s。实验结果表明,融合自注意力机制的YOLOv5模型有效提高了对交通标志检测的全局特征提取能力、检测准确率与检测效率。

     

    Abstract: Aiming at the problems of insufficient global feature information, insufficient feature fusion and low detection efficiency of YOLOv5 network model in complex environment. A kind of YOLOv5 traffic sign detection algorithm incorporating self-attention mechanism was proposed.In the backbone network feature extraction part, the Swin-Transformer module based on the self-attention mechanism and the C3 module which can reduce the calculation amount of the model to increase the information interaction between the feature images to obtain multi-scale image features. The feature image processing part of the model uses the visual Transformer model and the Swin-Transformer module to fuse the feature images, obtains the global feature information of the image to be measured, and improves the detection accuracy of the model.Finally, the original feature image splicing mode is weighted for processing, and the important traffic sign feature information can be preferentially detected, which improves the detection efficiency of the model. After testing in the TT100K datasets, the final mean average detection accuracy reached 83.51%, which was 2.50 percentage points higher than the original YOLOv5 network model and 0.037s higher compared to the original single feature image detection rate. The experimental results show that the YOLOv5 model integrating the self-attention mechanism effectively improves the global feature extraction ability, detection accuracy and detection efficiency of traffic sign detection.

     

/

返回文章
返回