• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
符强, 黄三峰, 纪元法, 等. 基于22 nm工艺的GNSS芯片片上偏差的时序分析[J]. 桂林电子科技大学学报, 2024, 44(4): 401-408. DOI: 10.3969/1673-808X.2023153
引用本文: 符强, 黄三峰, 纪元法, 等. 基于22 nm工艺的GNSS芯片片上偏差的时序分析[J]. 桂林电子科技大学学报, 2024, 44(4): 401-408. DOI: 10.3969/1673-808X.2023153
FU Qiang, HUANG Sanfeng, JI Yuanfa, et al. Timing analysis of on-chip variation for GNSS chips based on the 22 nm process[J]. Journal of Guilin University of Electronic Technology, 2024, 44(4): 401-408. DOI: 10.3969/1673-808X.2023153
Citation: FU Qiang, HUANG Sanfeng, JI Yuanfa, et al. Timing analysis of on-chip variation for GNSS chips based on the 22 nm process[J]. Journal of Guilin University of Electronic Technology, 2024, 44(4): 401-408. DOI: 10.3969/1673-808X.2023153

基于22 nm工艺的GNSS芯片片上偏差的时序分析

Timing analysis of on-chip variation for GNSS chips based on the 22 nm process

  • 摘要: 静态时序分析是芯片设计的一个重要环节。在22 nm工艺下的静态时序分析中,采用传统的OCV方法会导致时序不准确、性能不稳定和设计鲁棒性下降等问题。为了提高时序精确性和缩小设计周期,提出了一种基于22 nm工艺的GNSS导航芯片分析方法,使用ICC2实现布局布线以及PrimeTime工具实现静态时序分析;将遵循正态分布的局部参数替代固定的全局参数,采用参数式片上偏差技术结合路径分析模式进行建模。实验结果表明,参数式片上偏差与路径相结合建模的分析方法相较于先进式片上偏差技术,WNS优化了约56.2%,TNS改善了约82.2%,总违例路径减少了58.7%,节省了高达50.8%的时序分析时间,验证了参数式片上偏差与路径相结合的方法的优越性,降低了悲观度,提高了时序精确性,缩小了设计周期。

     

    Abstract: Static timing analysis holds a crucial position in the realm of chip design. In the static timing analysis under the 22nm process, adopting the traditional on-chip variation (OCV) method will lead to problems such as inaccurate timing, unstable performance, and decreased design robustness. In order to improve the timing accuracy of the design and shorten its design cycle. An analysis method for a GNSS navigation chip based on 22 nm technology is proposed. The ICC2 tool is employed for layout and routing, while PrimeTime is used for static timing analysis. The design replaces fixed global parameters with local parameters following normal distribution, uses parametric on-chip variation (POCV) technology combined with path-based analysis (PBA) to model. Experimental results demonstrate that the method combines parametric on-chip deviation and path modeling. When compared to advanced on-chip deviation technology, it shows significant improvements: the worst negative slack (WNS) is optimized by approximately 56.2%, the total negative slack (TNS) is enhanced by around 82.2%, and the overall violation path count is reduced by 58.7%. This leads to substantial savings in timing analysis time, with an efficiency gain of up to 50.8%. This effectively demonstrates the strengths and weaknesses of the combined approach of POCV and PBA, leading to improved timing accuracy and shortened design cycle.

     

/

返回文章
返回