• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
朱赞, 曹志斌, 姚钘, 等. 基于NDWI的青藏高原湖泊提取决策树构建与评价分析[J]. 桂林电子科技大学学报, xxxx, x(x): 1-1. DOI: 10.3969/1673-808X.2022291
引用本文: 朱赞, 曹志斌, 姚钘, 等. 基于NDWI的青藏高原湖泊提取决策树构建与评价分析[J]. 桂林电子科技大学学报, xxxx, x(x): 1-1. DOI: 10.3969/1673-808X.2022291
ZHU Zan, CAO Zhibin, YAO Xing, et al. Construction and evaluation analysis of decision tree for Lake extraction in Qinghai Tibet plateau based on NDWI[J]. Journal of Guilin University of Electronic Technology, xxxx, x(x): 1-1. DOI: 10.3969/1673-808X.2022291
Citation: ZHU Zan, CAO Zhibin, YAO Xing, et al. Construction and evaluation analysis of decision tree for Lake extraction in Qinghai Tibet plateau based on NDWI[J]. Journal of Guilin University of Electronic Technology, xxxx, x(x): 1-1. DOI: 10.3969/1673-808X.2022291

基于NDWI的青藏高原湖泊提取决策树构建与评价分析

Construction and evaluation analysis of decision tree for Lake extraction in Qinghai Tibet plateau based on NDWI

  • 摘要: 青藏高原作为“亚洲水塔”,是亚洲十多条大江大河的发源地,其水资源环境的变化对下游生态环境具有较大影响。利用遥感影像分类技术可以实现对高原湖泊水体的快速提取和监测。根据青藏高原存在大面积永久性和半永久性积雪的特点,传统的运用归一化水体指数(NDWI)和监督分类进行水体提取的方法通常很难区分湖泊水体和积雪。针对该问题,通过分析高原积雪和湖泊分布区域地貌环境,利用NDWI法和坡度要素构建了针对青藏高原湖泊水体提取的决策树分类模型,并通过设置对比实验的方法对所构建决策树的提取精度进行了验证。实验结果表明,该决策树分类精度可达94.5%,优于NDWI法提取精度的82.5%和监督分类法提取精度的88.5%。

     

    Abstract: As the "Water Tower of Asia", the Qinghai-Tibet Plateau is the birthplace of more than ten major rivers in Asia, and the changes of its water resource environment have a great impact on the downstream ecological environment. The use of remote sensing image classification technology can realize the rapid extraction and monitoring of plateau lake water bodies. According to the characteristics of large area of permanent and semi-permanent snow on the Qinghai-Tibet Plateau, the traditional methods of water body extraction using normalized water body index (NDWI) and supervised classification are usually difficult to distinguish lake water bodies from snow. To address this problem, a decision tree classification model for lake water extraction on the Tibetan plateau is constructed by analyzing the geomorphological environment of the plateau snowpack and lake distribution area using NDWI method and slope elements, and the extraction accuracy of the constructed decision tree is verified by setting up a comparison experiment. The experimental results show that the classification accuracy of the decision tree can reach 94.5%, which is better than 82.5% of the extraction accuracy of NDWI method and 88.5% of the extraction accuracy of supervised classification method.

     

/

返回文章
返回