• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
林乐平, 朱静, 欧阳宁. 基于协同对抗优化网络的图像压缩感知重建[J]. 桂林电子科技大学学报, xxxx, x(x): 1-7. DOI: 10.3969/1673-808X.2022202
引用本文: 林乐平, 朱静, 欧阳宁. 基于协同对抗优化网络的图像压缩感知重建[J]. 桂林电子科技大学学报, xxxx, x(x): 1-7. DOI: 10.3969/1673-808X.2022202
LIN Leping, ZHU Jing, OUYANG Ning. Image compressive sensing reconstruction based on cooperative adversarial optimization network[J]. Journal of Guilin University of Electronic Technology, xxxx, x(x): 1-7. DOI: 10.3969/1673-808X.2022202
Citation: LIN Leping, ZHU Jing, OUYANG Ning. Image compressive sensing reconstruction based on cooperative adversarial optimization network[J]. Journal of Guilin University of Electronic Technology, xxxx, x(x): 1-7. DOI: 10.3969/1673-808X.2022202

基于协同对抗优化网络的图像压缩感知重建

Image compressive sensing reconstruction based on cooperative adversarial optimization network

  • 摘要: 针对现有基于深度网络的图像压缩感知重建算法存在信息丢失,从而导致重建模糊的问题,引入生成对抗机制,提出一种基于协同对抗优化网络的图像压缩感知重建算法。将图像观测值输入生成器中,采用多尺度结构特征提取模块,对图像的多层次结构进行精细化重构;引入对抗机制,利用图像非局部相似特征对生成器的生成图像进行对抗约束,实现对原始图像的精确重构。实验结果表明,重建图像的客观评价指标与现有算法相比,PSNR提高了1.68~2.33 dB,SSIM提高了0.037 6 ~ 0.059 2,图像视觉效果表现突出,能够有效构建更精细的图像特征。

     

    Abstract: In view of the information loss in existing deep network-based image compressive sensing reconstruction algorithm, which leads to blurred reconstruction, a generative adversarial mechanism is introduced, and an image compressive sensing reconstruction algorithm based on cooperative adversarial optimization network is proposed. The algorithm inputs the image observations into the generator, and uses the multi-scale structure feature extraction module to refine the multi-level structure of the image; introduces an adversarial mechanism, and uses the non-local similar features of the image to confront the generated images of the generator. , to achieve accurate reconstruction of the original image. The experimental results show that compared with the existing algorithm, the objective evaluation index of the reconstructed image increases the PSNR value by 1.68 - 2.33 dB, and the SSIM by 0.037 6 - 0.059 2. The visual effect of the image is outstanding, and it can effectively construct finer image features.

     

/

返回文章
返回