• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
万海斌, 孙洪民, 农丝静, 等. 基于深度学习的馆藏图书索书号识别算法[J]. 桂林电子科技大学学报, 2025, 45(3): 221-228. DOI: 10.16725/j.1673-808X.2024517
引用本文: 万海斌, 孙洪民, 农丝静, 等. 基于深度学习的馆藏图书索书号识别算法[J]. 桂林电子科技大学学报, 2025, 45(3): 221-228. DOI: 10.16725/j.1673-808X.2024517
WAN Haibin, SUN Hongmin, NONG Sijing, et al. Call number recognition algorithm of collection books based on deep learning[J]. Journal of Guilin University of Electronic Technology, 2025, 45(3): 221-228. DOI: 10.16725/j.1673-808X.2024517
Citation: WAN Haibin, SUN Hongmin, NONG Sijing, et al. Call number recognition algorithm of collection books based on deep learning[J]. Journal of Guilin University of Electronic Technology, 2025, 45(3): 221-228. DOI: 10.16725/j.1673-808X.2024517

基于深度学习的馆藏图书索书号识别算法

Call number recognition algorithm of collection books based on deep learning

  • 摘要: 针对读者由于不熟悉索书号的排架方式等造成找书不便、耗时长等问题,提出了一种基于改进YOLOv5s和OCR技术的馆藏图书索书号识别算法。该算法由两部分构成,一是改进的YOLOv5算法识别图书书脊的索书号标签区域,二是EasyOCR识别该区域内的索书号文本。为了提高检测速度,对YOLOv5s算法进行了轻量化改进。首先,使用轻量化的MobileNetV3作为主干网络,降低参数量和计算量;其次,使用更高效的SimSPPF改进原始的SPP,加快网络运算速度;最后,在特征融合网络嵌入CA坐标注意力机制,提高模型的识别精度。实验结果表明,本算法比改进前算法具有更高的识别精度和更快的速度,能快速准确地识别图书索书号。本算法有助于推动图书馆由数字化向智慧化发展,为读者提供更加便捷、高效、个性化的服务。

     

    Abstract: Aiming at the problem that readers are not familiar with the arrangement method of call numbers, which makes it inconvenient to find books and takes a long time, a call number recognition algorithm for library books based on improved YOLOv5s and OCR technology is proposed. The algorithm consists of two parts. The first is the improved YOLOv5 algorithm to identify the call number label area of the spine of the book. The second is that EasyOCR recognizes the call number text in the area. In order to improve the detection speed, the YOLOv5s algorithm is lightweight improved. Firstly, the lightweight MobileNetV3 is used as the backbone network to reduce the amount of parameters and calculation. Secondly, the more efficient SimSPPF is used to improve the original SPP to speed up the network operation. Finally, the CA coordinate attention mechanism is embedded in the feature fusion network to improve the recognition accuracy of the model. The experimental results show that the proposed algorithm has higher recognition accuracy and faster speed than the original algorithm, and can quickly and accurately identify the book call number. It is helpful to promote the development of libraries from digital to intelligent and provide readers with more convenient, efficient and personalized services.

     

/

返回文章
返回