• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
赵绪成, 肖俊. 一种基于Informer模型的图像识别方法[J]. 桂林电子科技大学学报, 2024, 44(6): 650-656. DOI: 10.16725/j.1673-808X.2024170
引用本文: 赵绪成, 肖俊. 一种基于Informer模型的图像识别方法[J]. 桂林电子科技大学学报, 2024, 44(6): 650-656. DOI: 10.16725/j.1673-808X.2024170
ZHAO Xucheng, XIAO Jun. A image recognition model based on Informer model[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 650-656. DOI: 10.16725/j.1673-808X.2024170
Citation: ZHAO Xucheng, XIAO Jun. A image recognition model based on Informer model[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 650-656. DOI: 10.16725/j.1673-808X.2024170

一种基于Informer模型的图像识别方法

A image recognition model based on Informer model

  • 摘要: 为提升图像识别效果,满足当前复杂的图像识别任务,利用Informer模型设计了一种图像识别方法。该模型通过引入稀疏自注意力机制,有效降低了模型的时间复杂度和内存使用率。此外,采用生成式的解码器结构获取图像序列的输出,有效避免了模型推理阶段的累积误差传播。为了验证模型的效果,采用了3种不同类型的细粒度图像识别数据集:Road Sign Detection数据集、Stanford Cars数据集和中国交通标志检测数据集。Road Sign Detection数据集被用于初步验证图像识别模型的效果,而Stanford Cars数据集和CCTSDB数据集则是为了验证设计的图像识别模型在车辆识别和复杂场景下的识别效果。识别结果表明,在背景信息非常复杂的情况下,注意力层难以快速定位到关键特征区域,在经过多轮特征提取后,编码器得到了大量的无关特征,导致解码器在推理生成阶段缺乏充足的优质信息,致使模型训练不充分,降低了图像识别的准确率,但该图像识别模型仍能克服噪声信息的干扰,能取得较高的图像识别准确率。

     

    Abstract: In order to further improve the effect of image recognition, meet the current complex image recognition task, using Informer model to design a new type of image recognition model, the model by introducing probspares self-attention mechanism, effectively reduce the time complexity and memory usage, in addition, with generative decoder structure to obtain the output of image sequence, effectively avoid the cumulative error propagation of model reasoning stage. In order to verify the effect of the model, three different types of fine-grained image recognition datasets were used: Road Sign Detection data set, Stanford Cars data set, and Chinese traffic sign detection benchmark data set(CCTSDB). The Road Sign Detection data set was used to initially verify the effect of the image recognition model, while the Stanford Cars data set and the CCTSDB data set were used to verify the recognition effect of the designed image recognition model in vehicle recognition and complex scenarios. Identification results on the data set shows that in the background information is very complex, attention layer cannot quickly locate to the key feature area, after several rounds of feature extraction, the encoder got a lot of irrelevant features, decoder in reasoning generation stage cannot get enough quality information, the model training is insufficient, can reduce the accuracy of image recognition, but the image recognition model still can to overcome the interference of the noise information, can achieve high image recognition accuracy.

     

/

返回文章
返回