• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
高明, 高鹏, 高养侠. 基于核密度估计的短期电力负荷区间预测[J]. 桂林电子科技大学学报, 2024, 44(3): 261-267. DOI: 10.16725/j.1673-808X.202413
引用本文: 高明, 高鹏, 高养侠. 基于核密度估计的短期电力负荷区间预测[J]. 桂林电子科技大学学报, 2024, 44(3): 261-267. DOI: 10.16725/j.1673-808X.202413
GAO Ming, GAO Peng, GAO Yangxia. Short-term power load interval prediction based on LSTM&CNN-SVRKDE[J]. Journal of Guilin University of Electronic Technology, 2024, 44(3): 261-267. DOI: 10.16725/j.1673-808X.202413
Citation: GAO Ming, GAO Peng, GAO Yangxia. Short-term power load interval prediction based on LSTM&CNN-SVRKDE[J]. Journal of Guilin University of Electronic Technology, 2024, 44(3): 261-267. DOI: 10.16725/j.1673-808X.202413

基于核密度估计的短期电力负荷区间预测

Short-term power load interval prediction based on LSTM&CNN-SVRKDE

  • 摘要: 针对单点预测模型难以较全面地描述负荷变化趋势,以及优化算法存在局部易收敛和全局性搜索能力差的问题,提出一种基于改进烟花算法(IFWA)优化长短期记忆神经网络(LSTM)模型参数的IFWA-LSTM负荷预测模型。通过引入自适应调节因子和精英策略来提高烟花算法(FWA)的全局搜索能力和灵活性,以提高求解效率和精度。同时,采用核密度估计(KDE)对IFWA-LSTM模型得到的预测结果进行概率预测,针对KDE模型非线性映射能力较弱的问题,采用支持向量回归(SVR)对其进行优化拟合,再对预测值的概率密度函数进行求解,得到不同置信度下的功率预测区间。基于某台区的实测负荷数据对本模型进行实验验证,结果表明,相比于传统神经网络算法模型,本模型的预测精度更高,误差更小,整体预测性能更优。

     

    Abstract: Aiming at the problems that the single-point forecasting model is difficult to describe the load change trend more comprehensively, and the optimization algorithm has the problems of easy local convergence and poor global search ability, an IFWA-LSTM load forecasting model based on the Improved Fireworks Algorithm (IFWA) to optimize the parameters of the Long and Short-Term Memory Neural Network (LSTM) model was proposed. The global search capability and flexibility of the fireworks algorithm (FWA) were improved by introducing an adaptive adjustment factor and an elite strategy to enhance the solution efficiency and accuracy. At the same time, Kernel Density Estimation (KDE) was used to probabilistically predict the prediction results obtained from the IFWA-LSTM model, and for the problem of weak nonlinear mapping ability of the KDE model, Support Vector Regression (SVR) was used to optimally fit it, and then the probability density function of the predicted values was solved to obtain the power prediction intervals under different confidence levels. Based on the measured load data of a station area, the proposed model was verified experimentally. The results show that compared with the traditional neural network algorithm model, the proposed model has higher prediction accuracy, smaller result error, and better overall prediction performance.

     

/

返回文章
返回