• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
毛棋良, 赵红专, 张鑫, 等. 一种改进禁忌-BP神经网络的车载酒驾检测方法[J]. 桂林电子科技大学学报, 2025, 45(1): 62-68. DOI: 10.16725/j.1673-808X.2024111
引用本文: 毛棋良, 赵红专, 张鑫, 等. 一种改进禁忌-BP神经网络的车载酒驾检测方法[J]. 桂林电子科技大学学报, 2025, 45(1): 62-68. DOI: 10.16725/j.1673-808X.2024111
MAO Qiliang, ZHAO Hongzhuan, ZHANG Xin, et al. An improved tabu-BP neural network for in-vehicle DUI detection[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 62-68. DOI: 10.16725/j.1673-808X.2024111
Citation: MAO Qiliang, ZHAO Hongzhuan, ZHANG Xin, et al. An improved tabu-BP neural network for in-vehicle DUI detection[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 62-68. DOI: 10.16725/j.1673-808X.2024111

一种改进禁忌-BP神经网络的车载酒驾检测方法

An improved tabu-BP neural network for in-vehicle DUI detection

  • 摘要: 针对传统车载酒驾检测方法检测过程复杂、影响因素多、检测精度低等问题,考虑驾乘人员位置、开窗程度,提出了一种改进禁忌搜索(TS) - BP神经网络的融合车载酒驾检测方法。该方法通过在各搜索阶段设置不同邻域范围改进TS算法,利用改进的算法对BP神经网络的初始权值和阈值进行寻优,以提高检测模型的效率和精度,避免陷入局部最优解。对多传感器的数据进行融合以实现高精度的车载酒驾检测。实验结果表明,与传统方法相比,改进方法的模型平均绝对误差、均方误差、平均绝对百分比误差分别提高了65.78%、88.20%、58.38%,模型的收敛速度、性能及鲁棒性显著提高,可为车载便携性酒驾高精度检测提供参考。

     

    Abstract: For the problems of complex detection process, many influencing factors and low detection accuracy of traditional in-car DUI detection methods, an improved tabu search (TS) - BP neural network fusion in-car DUI detection method is proposed considering the driver and passenger positions and open window areas. Firstly, the TS algorithm is improved by setting different domain ranges in each search phase; secondly, the initial weights and thresholds of the BP neural network are optimized using the improved algorithm to improve the efficiency and accuracy of the detection model and avoid falling into local optimal solutions; finally, the data from multiple sensors are fused to achieve high-precision in-car DUI detection. The experiments show that the proposed detection method improves 65.78%, 88.20% and 58.38% of the model average absolute error, mean square error, and average absolute percentage error indexes, respectively, and the convergence speed and performance and robustness of the model are significantly improved compared with the traditional method. This study can provide a reference for in-vehicle portable DUI high-precision detection.

     

/

返回文章
返回