• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
董学琴, 罗奕, 文渊, 等. 基于改进冠豪猪算法的主动配电网故障定位J. 桂林电子科技大学学报, 2025, 45(5): 449-458. DOI: 10.16725/j.1673-808X.2024101
引用本文: 董学琴, 罗奕, 文渊, 等. 基于改进冠豪猪算法的主动配电网故障定位J. 桂林电子科技大学学报, 2025, 45(5): 449-458. DOI: 10.16725/j.1673-808X.2024101
DONG Xueqin, LUO Yi, WEN Yuan, et al. Fault location of active distribution network based on improved crested porcupine optimizerJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 449-458. DOI: 10.16725/j.1673-808X.2024101
Citation: DONG Xueqin, LUO Yi, WEN Yuan, et al. Fault location of active distribution network based on improved crested porcupine optimizerJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 449-458. DOI: 10.16725/j.1673-808X.2024101

基于改进冠豪猪算法的主动配电网故障定位

Fault location of active distribution network based on improved crested porcupine optimizer

  • 摘要: 随着分布式电源在配电网中的广泛部署,分析其对现有配电网故障定位的影响变得尤为重要。通过理论分析和仿真实验,探讨了分布式新能源电源接入对配电网故障定位的影响,通过分析自动化监测装置的故障特征信息,构建了适用于多状态不同分布式电源的开关函数和评价函数。此外,为提升故障定位算法的优化性能,提出多策略改进的冠豪猪优化(ICPO)算法,引入最优位置引导系数,结合透镜成像反向学习原理和动态随机游走策略,使得算法跳出局部最优的能力大幅提高。仿真结果表明,在主动配电网发生单区段故障、多区段故障或FTU信息发生畸变的情况下,ICPO算法在定位的准确度、快速性、容错性上都有较大提升,并提高了收敛性能和求解效率。

     

    Abstract: In this paper, the impact of widespread deployment of distributed energy resources (DERs) on fault location in distribution networks is systematically investigated. Through theoretical analysis and simulation experiments, the study examines how the integration of distributed renewable energy sources affects fault location processes in distribution grids. To address this, a new switch function and a fitness function are constructed, tailored for systems with multi-state, diverse distributed sources. Additionally, to enhance the optimization performance of the fault location algorithm, a multi-strategy improved crested porcupine optimizer (ICPO) algorithm is proposed. This algorithm incorporates an optimal position guidance to enhance the global search capability of the crested porcupine optimizer (CPO) algorithm, along with a lens imaging inverse learning strategy to enhance the capability of escaping local optima, thereby improving the optimization performance. Furthermore, a dynamic random walk strategy is implemented to escape local optima and improve the search for the optimal solution. Simulation results indicate that the proposed ICPO algorithm significantly improves accuracy, convergence speed, fault tolerance, and computational efficiency in fault location, particularly in active distribution networks experiencing single or multiple section faults, or when fault alarm information is distorted.

     

/

返回文章
返回