• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
吕珺吉, 于卫容, 刘杰, 等. 基于Python参数建模的模量正算在模量反算中的应用研究J. 桂林电子科技大学学报, 2025, 45(5): 499-504. DOI: 10.16725/j.1673-808X.2023191
引用本文: 吕珺吉, 于卫容, 刘杰, 等. 基于Python参数建模的模量正算在模量反算中的应用研究J. 桂林电子科技大学学报, 2025, 45(5): 499-504. DOI: 10.16725/j.1673-808X.2023191
LYU Junji, YU Weirong, LIU Jie, et al. Application of forward modulus calculation based on Python parameter modeling in inverse modulus calculationJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 499-504. DOI: 10.16725/j.1673-808X.2023191
Citation: LYU Junji, YU Weirong, LIU Jie, et al. Application of forward modulus calculation based on Python parameter modeling in inverse modulus calculationJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 499-504. DOI: 10.16725/j.1673-808X.2023191

基于Python参数建模的模量正算在模量反算中的应用研究

Application of forward modulus calculation based on Python parameter modeling in inverse modulus calculation

  • 摘要: 根据FWD弯沉数据进行的模量反算在沥青路面状态检测中已被广泛应用,但其准确性远低于直接利用结构模量进行的正算。利用Python对有限元软件进行参数化建模,构建了弯沉盆数据库。基于结构模量正算弯沉数据具有高度准确性的特点,提出了一种有针对性地进行结构层模量反向调整的策略:在弯沉数据库的基础上,利用神经网络对模量组合下的弯沉值进行直接预测,通过预测弯沉值的均方根误差反向调节结构模量值。研究结果表明,土基模量误差低于0.1%,根据预测弯沉值的均方根误差对初始模量进行迭代调整后,面、基层模量误差均可控制在1%以下,达到了较好的反算效果。该方法为基于FWD的模量反算方法在沥青路面损害检测领域提供了新的思路。

     

    Abstract: Modulus inversion based on FWD bending data has been widely applied in asphalt pavement condition detection. However, its accuracy is notably inferior to that of direct structural modulus inversion. Python was utilized to parametrically model finite element software and establish a database of bending basins. A strategy for targeted adjustment of structural modulus is proposed, leveraging the high accuracy of positive deflection data of structural modulus. Utilizing the deflection database, a neural network is employed to directly forecast bending values under varying modulus combinations. The structural modulus is then reversed by predicting the root-mean-square error of the bending value. Results indicate that soil foundation modulus error is less than 0.1%. Through iterative adjustment of the initial modulus based on the root-mean-square error(RMSE) of predicted bending values, the modulus error of surface and base can be reduced to less than 1%, achieving a favorable inverse calculation effect. This method presents a novel approach to inverse modulus calculation based on FWD in the domain of asphalt pavement damage detection.

     

/

返回文章
返回