• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
孔超, 高祥云, 孙先兰, 等. 融合学习者遗忘行为的多特征深度知识追踪[J]. 桂林电子科技大学学报, 2025, 45(3): 229-236. DOI: 10.16725/j.1673-808X.2023189
引用本文: 孔超, 高祥云, 孙先兰, 等. 融合学习者遗忘行为的多特征深度知识追踪[J]. 桂林电子科技大学学报, 2025, 45(3): 229-236. DOI: 10.16725/j.1673-808X.2023189
KONG Chao, GAO Xiangyun, SUN Xianlan, et al. Empowering multi-feature deep knowledge tracing with learner forgetting behavior[J]. Journal of Guilin University of Electronic Technology, 2025, 45(3): 229-236. DOI: 10.16725/j.1673-808X.2023189
Citation: KONG Chao, GAO Xiangyun, SUN Xianlan, et al. Empowering multi-feature deep knowledge tracing with learner forgetting behavior[J]. Journal of Guilin University of Electronic Technology, 2025, 45(3): 229-236. DOI: 10.16725/j.1673-808X.2023189

融合学习者遗忘行为的多特征深度知识追踪

Empowering multi-feature deep knowledge tracing with learner forgetting behavior

  • 摘要: 作为智慧教育领域的一个重要研究方向,知识追踪旨在对学习者的行为序列进行建模,预测学习者下一时刻正确作答的概率,这是构建自适应教育系统的核心和关键。现有研究主要侧重于单一交互特征的利用,却往往忽略了在练习习题的过程中产生的其他异质特征,这些特征潜在地影响了学习者的知识状态变化。此外,学习者在学习过程中存在知识点的遗忘,这种遗忘行为会导致模型预测结果与实际产生较大偏差。为了解决以上问题,提高现有深度知识追踪模型的性能,提出了一个融合学习者遗忘行为的多特征深度知识追踪(MuDKT)模型。该模型挖掘了学习者的多种异质特征,融合学习者的遗忘行为,模拟学习者的知识状态并预测下一时刻正确作答的概率。MuDKT模型主要分为3步:首先,针对学习者作答次数等异质特征,使用one-hot编码对学习者与习题交互过程进行表示,实现学习者交互嵌入;其次,基于循环神经网络(RNN)中隐层向量模拟学习者学习过程中知识状态的变化,实时更新学习者的知识状态,同时,引入带有衰减函数的注意力机制,模拟学习者与习题交互中的遗忘行为;最后,通过sigmoid激活函数将隐层向量传递到全连接层,预测学习者下一时刻正确作答的概率。在3个真实数据集上的实验结果表明,MuDKT模型性能相较于对比方法均有提升,为后续的个性化学习路径生成等任务提供参考。

     

    Abstract: As an important research focus in the field of smart education, knowledge tracing aims to model the behavior sequences of learners and predicting the probability of learners answering the exercise correctly in the next time. This constitutes the core and pivotal aspect of constructing adaptive educational systems. Current research primarily emphasizes the utilization of single interaction features while often overlooking other heterogeneous features generated during the practice of exercises, which potentially impacts changes in the learner's knowledge state. Additionally, learners experience knowledge forgetting during the learning process, and this forgetting behavior can lead to significant deviations between model predictions and actual outcomes. To address the aforementioned issues and enhance the performance of existing deep knowledge tracing models, a Multi-Feature Deep Knowledge Tracing (MuDKT) model is proposed. MuDKT can effectively model the learner's knowledge state and predict the probability of correctly answering the exercise in the next time by mining these diverse learner heterogeneous features and integrates their forgetting behavior. Specifically, the model consists of three components. Firstly, one-hot encoding is used to represent the learner’s and exercises interaction process based on heterogeneous features and obtain the learner interaction embedding. Secondly, simulating the evolution of learners' knowledge state during the learning process based on the hidden states in recurrent neural network (RNN), and update learners' knowledge state in real-time. At the same time, an attention mechanism with attenuation function is introduced to simulate the forgetting behavior in learners' and exercises interaction. Finally, by applying a sigmoid activation function, the hidden state is passed to a fully connected layer to predict the probability of a learner correctly answering the exercise in the next time. Experimental results on three real-world datasets demonstrate that MuDKT outperforms baselines, which can provide a reference for follow-up personalized learning path generation, etc.

     

/

返回文章
返回