• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
田丹, 李春梅. 多视图聚类中的图正则化低秩深度矩阵分解算法[J]. 桂林电子科技大学学报, 2025, 45(3): 313-318. DOI: 10.16725/j.1673-808X.2023188
引用本文: 田丹, 李春梅. 多视图聚类中的图正则化低秩深度矩阵分解算法[J]. 桂林电子科技大学学报, 2025, 45(3): 313-318. DOI: 10.16725/j.1673-808X.2023188
TIAN Dan, LI Chunmei. Graph regularization low rank deep matrix factorization algorithm in multi-view clustering[J]. Journal of Guilin University of Electronic Technology, 2025, 45(3): 313-318. DOI: 10.16725/j.1673-808X.2023188
Citation: TIAN Dan, LI Chunmei. Graph regularization low rank deep matrix factorization algorithm in multi-view clustering[J]. Journal of Guilin University of Electronic Technology, 2025, 45(3): 313-318. DOI: 10.16725/j.1673-808X.2023188

多视图聚类中的图正则化低秩深度矩阵分解算法

Graph regularization low rank deep matrix factorization algorithm in multi-view clustering

  • 摘要: 为了提升多视图聚类效果,提出了一种多视图聚类中的深度矩阵分解算法。利用低秩约束在去除冗余和噪声的同时捕获潜在低秩数据结构, 并通过引入图正则化来保持每个视图中数据的几何结构, 建立新的多视图聚类中的图正则化低秩深度矩阵分解模型。通过设计的交替方向乘子法求解该模型,并给出了收敛性定理。仿真实验结果表明, 该算法可行且有效。

     

    Abstract: In order to improve the effect of multi-view clustering, a deep matrix decomposition algorithm in multi-view clustering is studied. A new low-rank deep matrix decomposition model in multi-view clustering is established by using low-rank constraints to capture potential low-rank data structures while removing redundancy and noise, and by introducing graph regularization to preserve the geometric structure of data in each view. The model is solved by the alternate direction multiplier method and the convergence theorem is given. Simulation results show that the algorithm is feasible and effective.

     

/

返回文章
返回