• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
蔡佳诺, 黄乾, 高鹏. 基于支持向量回归的短期风电功率概率预测J. 桂林电子科技大学学报, 2025, 45(5): 466-471. DOI: 10.16725/j.1673-808X.2023186
引用本文: 蔡佳诺, 黄乾, 高鹏. 基于支持向量回归的短期风电功率概率预测J. 桂林电子科技大学学报, 2025, 45(5): 466-471. DOI: 10.16725/j.1673-808X.2023186
CAI Jianuo, HUANG Qian, GAO Peng. Short term wind power probability prediction based on support vector regressionJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 466-471. DOI: 10.16725/j.1673-808X.2023186
Citation: CAI Jianuo, HUANG Qian, GAO Peng. Short term wind power probability prediction based on support vector regressionJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 466-471. DOI: 10.16725/j.1673-808X.2023186

基于支持向量回归的短期风电功率概率预测

Short term wind power probability prediction based on support vector regression

  • 摘要: 风电功率的高精度预测能够为电力部门提供更多信息,有助于电力系统的调度和运行维护,为并网带来了更多便利。但单一预测模型对风电序列数据的处理能力有限,往往一些重要特征未被充分利用。针对该问题,提出了一种基于支持向量回归的多元神经网络组合预测模型(LSTM&CNN-SVR)。首先结合LSTM、CNN两种神经网络模型的处理特点,得到3组具有各自优势性能的预测值;然后利用支持向量回归(SVR)模型良好的非线性数据处理能力,对2个模型的输出进行拟合优化。为了修正数据的不均匀性,将SVR与核密度估计(KDE)方法相结合,得到预测值的概率密度分布曲线及其在某置信度下的功率预测区间。基于某风电场的实测数据对模型进行实验验证,实验结果表明,与传统预测模型相比,本模型的预测精度更高、误差更小、整体预测性能更好。

     

    Abstract: An increased level of convenience for grid connection and assistance with scheduling, operation, and maintenance of the power system can be obtained by the power sector with high-accuracy wind power prediction. However, a single prediction model has limited ability to handle wind power sequence data, and often crucial elements go unused. To address this problem, a combined multivariate neural network prediction model based on support vector regression (LSTM&CNN-SVR) was proposed. First, the model combined the processing characteristics of the two neural network models, LSTM and CNN, to obtain three sets of predicted values with their respective advantages. Then the model utilizes the support vector regression (SVR) model's processing ability for nonlinear data to optimize the outputs of the two neural networks. In order to correct the data’s inhomogeneity, SVR was combined with the kernel density estimation (KDE) method to obtain the probability density distribution curves of the predicted values and their power prediction intervals at a certain confidence level, which could more intuitively represent the trend of wind power. The experimental validation of the model is based on the measured data of a wind farm, and the results show that compared with the traditional prediction model, the proposed model achieves higher prediction accuracy, smaller error and better overall prediction performance

     

/

返回文章
返回