• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
利金生, 朱炜义, 张彤, 等. 基于Encoder-Decoder结构和时间嵌入的光伏功率预测模型J. 桂林电子科技大学学报, 2025, 45(5): 459-465. DOI: 10.16725/j.1673-808X.2023144
引用本文: 利金生, 朱炜义, 张彤, 等. 基于Encoder-Decoder结构和时间嵌入的光伏功率预测模型J. 桂林电子科技大学学报, 2025, 45(5): 459-465. DOI: 10.16725/j.1673-808X.2023144
LI Jinsheng, ZHU Weiyi, ZHANG Tong, et al. Photovoltaic power prediction model based on Encoder-Decoder structure and time embeddingJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 459-465. DOI: 10.16725/j.1673-808X.2023144
Citation: LI Jinsheng, ZHU Weiyi, ZHANG Tong, et al. Photovoltaic power prediction model based on Encoder-Decoder structure and time embeddingJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 459-465. DOI: 10.16725/j.1673-808X.2023144

基于Encoder-Decoder结构和时间嵌入的光伏功率预测模型

Photovoltaic power prediction model based on Encoder-Decoder structure and time embedding

  • 摘要: 针对光伏发电功率间歇性和波动性带来的电网安全运行问题,提出一种基于Encoder-Decoder结构和时间嵌入的短期单步光伏功率预测模型。在Encoder层利用LSTM(long short-term memory)单元提取光伏发电功率的特征,通过引入多头注意力机制来加强对输入序列中重要信息的关注。在Decoder层加入差值嵌入和时间嵌入,结合Encoder层的输出进行单步预测。采用平均插值法、降采样和z-score标准化处理原始数据,在不同气象类型下对多个模型进行对比分析。实验结果表明,在均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)三种评价指标上,本模型在不同的气象条件下均优于其他2种对比模型;并且在多云天气下,本模型与其他模型相比,MSE、MAE、RMSE分别降低了34.7%、27.5%、16.6%,具有更高的预测精度和较强的鲁棒性。

     

    Abstract: A short-term one-step photovoltaic power prediction model based on Encoder Decoder structure and time embedding was proposed to address the safety operation issues of the power grid caused by intermittent and fluctuating photovoltaic power generation. LSTM units were used to extract the characteristics of photovoltaic power generation, a multi-head attention mechanism was introduced to enhance important information attention in the input sequence. The difference embedding and time embedding were added in the Decoder layer, combined with the output of the Encoder layer for one-step prediction. Average interpolation, downsampling and z-score standardization were introduced to process raw data, and different models were compared under different meteorological types. The experimental results show that, in terms of MSE, MAE and RMSE, the proposed model achieves 34.7%, 27.5% and 16.6% lower error values, respectively, compared with other models under cloudy weather conditions, with higher prediction accuracy and enhanced robustness.

     

/

返回文章
返回