• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
李子源, 黄鹏儒, 孙立贤, 等. 基于机器学习的反尖晶石氧化物形成能研究[J]. 桂林电子科技大学学报, 2024, 44(5): 441-451. DOI: 10.16725/j.1673-808X.2023124
引用本文: 李子源, 黄鹏儒, 孙立贤, 等. 基于机器学习的反尖晶石氧化物形成能研究[J]. 桂林电子科技大学学报, 2024, 44(5): 441-451. DOI: 10.16725/j.1673-808X.2023124
LI Ziyuan, HUANG Pengru, SUN Lixian, et al. Research on the formation energy of inverse spinel oxides based on machine learning[J]. Journal of Guilin University of Electronic Technology, 2024, 44(5): 441-451. DOI: 10.16725/j.1673-808X.2023124
Citation: LI Ziyuan, HUANG Pengru, SUN Lixian, et al. Research on the formation energy of inverse spinel oxides based on machine learning[J]. Journal of Guilin University of Electronic Technology, 2024, 44(5): 441-451. DOI: 10.16725/j.1673-808X.2023124

基于机器学习的反尖晶石氧化物形成能研究

Research on the formation energy of inverse spinel oxides based on machine learning

  • 摘要: 为了充分利用开源数据库中的数据,加速反尖晶石氧化物的研究,提取了数据库材料项目中1 746个化学式为AB2O4的化合物数据,并从中筛选出111个反尖晶石氧化物,构建了基于阳离子占位情况的特征工程。将得到的数据集作为机器学习模型的输入变量,通过机器学习的方式预测反尖晶石氧化物的形成能。使用随机森林(RF)、梯度提升回归树(GBRT)、极端梯度提升(XGBoost)算法构建了3种机器学习模型,经过特征选择,找出了对模型影响最大的多个特征。将反尖晶石氧化物形成能的预测值与实际值进行对比,得到了对形成能预测最佳的模型GBRT,其在测试集上的决定系数(R2)和均方根误差(RMSE)分别为0.886 667和0.209 970。训练得到的GBRT模型可用于预测反尖晶石氧化物形成能,从而加快反尖晶石氧化物的探索进度。

     

    Abstract: To fully utilize the data in open-source databases and expedite research on inverse spinel oxides, compound data with 1 746 chemical formulas of AB2O4 were extracted from the Materials Project (MP) database. From this dataset, 111 inverse spinel oxides were selected, and a feature engineering approach based on cation occupancy was concurrently developed. The resulting data set was used as input variables for machine learning models to predict the formation energies of inverse spinel oxides. Three machine learning models, random forest (RF), gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) were constructed using these algorithms. After performing feature selection, the optimal features influencing the models were identified. Additionally, a comparison was made between the predicted formation energies and the actual values of inverse spinel oxides, the GBRT model that can provide the best predictions was obtained, and which achieves a coefficient of determination (R2) of 0.886 667 and a root-mean-square error (RMSE) of 0.209 970 on the test set. The trained GBRT model can be utilized to predict the formation energies of inverse spinel oxides, thus expediting the exploration progress of these materials.

     

/

返回文章
返回