• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
于卫容, 英红, 刘杰, 等. 基于改进YOLOv5的沥青路面裂缝检测J. 桂林电子科技大学学报, 2025, 45(4): 347-354. DOI: 10.16725/j.1673-808X.2023119
引用本文: 于卫容, 英红, 刘杰, 等. 基于改进YOLOv5的沥青路面裂缝检测J. 桂林电子科技大学学报, 2025, 45(4): 347-354. DOI: 10.16725/j.1673-808X.2023119
YU Weirong, YING Hong, LIU Jie, et al. Asphalt pavement crack detection based on improved YOLOv5J. Journal of Guilin University of Electronic Technology, 2025, 45(4): 347-354. DOI: 10.16725/j.1673-808X.2023119
Citation: YU Weirong, YING Hong, LIU Jie, et al. Asphalt pavement crack detection based on improved YOLOv5J. Journal of Guilin University of Electronic Technology, 2025, 45(4): 347-354. DOI: 10.16725/j.1673-808X.2023119

基于改进YOLOv5的沥青路面裂缝检测

Asphalt pavement crack detection based on improved YOLOv5

  • 摘要: 为解决道路病害检测的问题,针对沥青路面裂缝人工检测成本高、效率低的缺点,提出一种基于改进YOLOv5的沥青路面裂缝检测算法。首先,通过多功能检测车采集沥青路面图像,将5 224张图片按7∶3的比例分成训练集和测试集,建成沥青路面裂缝检测数据集;再分别引入CBAM模块、BiFPN模块与GSConv卷积网络替换YOLOv5模型中的特征提取网络,对沥青路面裂缝进行识别。实验结果表明,改进后的YOLOv5算法模型相较于原算法模型的F1值、准确率、mAP值、召回率分别提高了0.4、2.4、1.2、1个百分点,模型参数量下降了1.1×106,且改进后的模型检测准确率达88.3%。改进后的YOLOv5模型可有效检测出复杂背景下的各种裂缝。

     

    Abstract: To address the road damage detection problem, an improved YOLOv5-based asphalt pavement crack detection method was proposed to overcome the disadvantages of high cost and low efficiency of manual asphalt pavement crack detection. Firstly, asphalt pavement images were collected by a multifunctional inspection tool, and 5 224 images were divided into training and test sets at a 7:3 ratio to construct the asphalt pavement crack detection dataset. Then, the CBAM module, BiFPN module, and GSCConv network were introduced to modify the feature extraction network of the YOLOv5 model for asphalt pavement crack detection. The experimental results show that the F1 value, accuracy, mAP, and recall of the improved YOLOv5 algorithm model increase by 0.4%, 2.4%, 1.2%, and 1% respectively, and the number of model parameters decreased by 1.1×106 compared with the original algorithm model, and a detection accuracy of 88.3% is obtained for the improved model. Therefore, the improved YOLOv5 model can effectively detect various types cracks in complex road scenes.

     

/

返回文章
返回