• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
梁晓晗, 黄靖骞, 孙锐, 等. 纳米铋颗粒的非线性尺寸依赖熔化温度和熔化焓J. 桂林电子科技大学学报, 2025, 45(5): 518-524. DOI: 10.16725/j.1673-808X.2023105
引用本文: 梁晓晗, 黄靖骞, 孙锐, 等. 纳米铋颗粒的非线性尺寸依赖熔化温度和熔化焓J. 桂林电子科技大学学报, 2025, 45(5): 518-524. DOI: 10.16725/j.1673-808X.2023105
LIANG Xiaohan, HUANG Jingqian, SUN Rui, et al. Nonlinear size-dependent melting temperature and fusion enthalpy of Bi nanoparticlesJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 518-524. DOI: 10.16725/j.1673-808X.2023105
Citation: LIANG Xiaohan, HUANG Jingqian, SUN Rui, et al. Nonlinear size-dependent melting temperature and fusion enthalpy of Bi nanoparticlesJ. Journal of Guilin University of Electronic Technology, 2025, 45(5): 518-524. DOI: 10.16725/j.1673-808X.2023105

纳米铋颗粒的非线性尺寸依赖熔化温度和熔化焓

Nonlinear size-dependent melting temperature and fusion enthalpy of Bi nanoparticles

  • 摘要: 针对纳米颗粒的表面效应影响其热力学性质的问题,提出一种将纳米颗粒的尺寸引入表面能计算的方法。首先,将纳米颗粒的尺寸引入表面能的计算中,得到一个关于纳米颗粒尺寸的热力学模型;然后,将铋纳米的热力学参数代入模型中,得到铋纳米颗粒表面能、表面吉布斯自由能随粒径、温度等变量的变化关系,铋纳米颗粒的尺寸对其表面能、表面吉布斯自由能、熔化温度、熔化焓和熔化熵均有显著影响;最后,通过机器学习支持向量回归的方法对该模型的准确性进行评估,得到相对误差在3%之内,结果表明,该模型能够准确评估纳米颗粒的热力学性质。

     

    Abstract: To address the problem that the surface effect of nanoparticles affects their thermodynamic properties, a method of introducing the size of nanoparticles into the calculation of surface energy is proposed. Firstly, the size of the nanoparticle was introduced into the calculation of surface energy, and a size-dependent thermodynamic model of nanoparticle was obtained. Then, the thermodynamic parameters of bismuth nanoparticles were brought into the model, and the relationship between surface energy and surface Gibbs free energy of bismuth nanoparticles with particle size, temperature and other variables was obtained. The size of bismuth nanoparticles has significant effects on their surface energy, surface Gibbs free energy, melting temperature, melting enthalpy and melting entropy. The accuracy of the model was evaluated by machine learning support vector regression, and the relative error is within 3%, and the results show that the model can effectively evaluate the thermodynamic properties of nanoparticles.

     

/

返回文章
返回