• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
张正昕, 王勇, 刘世嘉. 一种容器云水平伸缩负载预测方法[J]. 桂林电子科技大学学报, 2024, 44(6): 634-641. DOI: 10.16725/j.1673-808X.202272
引用本文: 张正昕, 王勇, 刘世嘉. 一种容器云水平伸缩负载预测方法[J]. 桂林电子科技大学学报, 2024, 44(6): 634-641. DOI: 10.16725/j.1673-808X.202272
ZHANG Zhengxin, WANG Yong, LIU Shijia. A horizontal scaling load forecasting method for container cloud[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 634-641. DOI: 10.16725/j.1673-808X.202272
Citation: ZHANG Zhengxin, WANG Yong, LIU Shijia. A horizontal scaling load forecasting method for container cloud[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 634-641. DOI: 10.16725/j.1673-808X.202272

一种容器云水平伸缩负载预测方法

A horizontal scaling load forecasting method for container cloud

  • 摘要: 欠预测将导致服务能力降低、请求违例率及拒绝率上升,最终导致服务质量降级。针对目前容器云的负载预测策略研究,欠预测导致网络应用访问请求丢失而未能有效解决的问题,提出了一个欠预测应对策略(PFCS)框架,并在此基础上提出了一种面向突发流量的应急伸缩算法(ESA)。该方法可有效检测出欠预测情况的发生,及时激活应急预测模型,为伸缩决策提供另一选项;可缩短水平伸缩策略应对突发流量的失效时间,降低请求拒绝率,进而提高整体服务质量。采用实际网络应用流量数据对ESA在改善服务质量方面的有效性进行了验证,利用对比实验就PFCS对欠预测的应对效果进行评估。实验结果表明,相比仅使用预测算法的伸缩策略,PFCS能够在不影响预测精度的情况下,使请求拒绝率平均降低19.8%~23.0%。实验结果证明了ESA与PFCS的有效性。

     

    Abstract: Underprediction will lead to the decrease of service capability, the increase of request violation rate and rejection rate, and finally the degradation of service quality. In the current research on load prediction strategy of container cloud, there is no effective solution to the problem that network application access request is lost due to prediction failure. A underprediction coping strategy (PFCS) was proposed, and an emergency scaling algorithm (ESA) was proposed based on the PFCS. This strategy can effectively detect the occurrence of prediction failure, activate the emergency prediction model in time, and provide another option for scaling decisionl; This strategy can shorten the failure time of horizontal scaling policy to deal with burst traffic, reduce the request rejection rate, and improve the overall quality of service. The experiment uses real network application traffic data to verify the effectiveness of ESA in improving quality of service. The comparison experiment is used to evaluate the response effect of PFCS on prediction failure. The experimental results show that compared with the scaling strategy using only prediction algorithm, udder the condition of not affecting the prediction accuracy, PFCS can make rejection rates decrease by 19.8%-23.0%on average. The experimental results demonstrate the effectiveness of ESA and PFCS.

     

/

返回文章
返回