• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
廖家设, 张彤, 谢青峰, 等. 基于改进YOLOv5的异型烟检测算法[J]. 桂林电子科技大学学报, 2024, 44(6): 613-620. DOI: 10.16725/j.1673-808X.2022340
引用本文: 廖家设, 张彤, 谢青峰, 等. 基于改进YOLOv5的异型烟检测算法[J]. 桂林电子科技大学学报, 2024, 44(6): 613-620. DOI: 10.16725/j.1673-808X.2022340
LIAO Jiashe, ZHANG Tong, XIE Qingfeng, et al. Special-shaped cigarette detection algorithm based on improved YOLOv5[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 613-620. DOI: 10.16725/j.1673-808X.2022340
Citation: LIAO Jiashe, ZHANG Tong, XIE Qingfeng, et al. Special-shaped cigarette detection algorithm based on improved YOLOv5[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 613-620. DOI: 10.16725/j.1673-808X.2022340

基于改进YOLOv5的异型烟检测算法

Special-shaped cigarette detection algorithm based on improved YOLOv5

  • 摘要: 为了解决异型烟核对工作量繁重,降低条烟误检率,提高烟草物流行业的工作效率和智能化水平,提出一种基于改进YOLOv5的异型烟检测算法。该算法以YOLOv5作为基础框架,通过引入金字塔切分注意力(PSA)模块来提取特征空间域信息,并与Focus模块提取的特征通道域信息融合,获得多维度特征信息;空洞空间金字塔池化(ASPP)用于改进SPP模块,使用不同比率的空洞卷积运算,可在保证分辨率的情况下扩大感受野,减少运算参数;使用K-means++聚类算法对锚框进行优化,提高锚框与所获得图像的匹配度。使用生产现场采集的异型烟数据集对算法进行训练,结果表明,mAP参数为94.14%,比优化前提高5.04个百分点。改进后的模型未引入复杂模块,可部署在AI边缘计算集成开发板中,推理和识别时间约为75 ms,能满足生产现场实时性要求。

     

    Abstract: In order to solve the problem of heavy workload in checking and detecting special-shaped cigarettes, reduce the false detection rate, and improve the working efficiency and intelligent level of the tobacco logistics industry, a special-shaped cigarette detection algorithm based on improved YOLOv5 is proposed. The algorithm takes YOLOv5 as the basic framework, introduces pyramid split attention(PSA) module to extract feature space domain information, and concatenate with feature channel domain information extracted by Focus module to obtain multi-dimensional feature information; Atrous Spatial Pyramid Pooling (ASPP) is used to replace SPP module, and use different ratio of cavity convolution operation to expand receptive field and reduce operation parameters while ensuring resolution; K-means++ algorithm is used to optimize the anchor frame and improve the matching degree between the anchor frame and the obtained image. The algorithm was tested with the special-shaped cigarette image set collected in the production line, and the mAP parameter of the experimental result is 94.14%, which is 5.04% higher than the result before optimization. In addition, the improved model does not introduce complex modules, and can be deployed in the AI edge computing integrated development board. The reasoning and recognition time is about 75 ms, which can meet the real-time requirements of the production line.

     

/

返回文章
返回