• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
黄燕卿, 英红. 改进LBP和CNN相结合的疲劳驾驶检测方法[J]. 桂林电子科技大学学报, 2025, 45(1): 69-75. DOI: 10.16725/j.1673-808X.202224
引用本文: 黄燕卿, 英红. 改进LBP和CNN相结合的疲劳驾驶检测方法[J]. 桂林电子科技大学学报, 2025, 45(1): 69-75. DOI: 10.16725/j.1673-808X.202224
HUANG Yanqing, YING Hong. A combined algorithm of improved LBP and CNN for driver fatigue detection[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 69-75. DOI: 10.16725/j.1673-808X.202224
Citation: HUANG Yanqing, YING Hong. A combined algorithm of improved LBP and CNN for driver fatigue detection[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 69-75. DOI: 10.16725/j.1673-808X.202224

改进LBP和CNN相结合的疲劳驾驶检测方法

A combined algorithm of improved LBP and CNN for driver fatigue detection

  • 摘要: 针对因面部疲劳信息不全或局部丢失致使驾驶员疲劳状态不能够充分表征,导致疲劳检测准确率不高的问题,提出了一种基于面部区域增加权重的分块LBP特征纹理提取方法。基于不同光线条件下的驾驶员图像,构建了疲劳识别的基本图像数据集,通过自建数据集、预处理和数据增强,完成数据集样本图像的采集和归纳。提出了一种8×8块加权LBP算法,并用其从数据集图像中提取驾驶员的面部特征纹理,将作为卷积神经网络的输入以进行模型学习与训练。实验结果表明,所提算法特征提取速度快,仅耗时0.01 s,且疲劳检测模型具有良好的识别精度和泛化能力,模型准确率为93.52%。所提算法不仅能够保留图像纹理变化表征能力,还能有效降低特征冗余,为驾驶员疲劳状态的识别提供了一种可行的方法。

     

    Abstract: A chunked LBP feature texture extraction method based on increasing weights of facial regions is proposed to address the problem of incomplete or partial loss of facial fatigue information resulting in inadequate characterisation of the driver's fatigue state, leading to low accuracy of fatigue detection. A basic image dataset for fatigue recognition is constructed based on driver images under different lighting conditions, and the acquisition and generalisation of sample images in the dataset is completed through self-built datasets, pre-processing and data enhancement work. An 8×8 block-weighted LBP algorithm is proposed and used to extract the driver's facial feature texture from the dataset images, which is used as the input of the convolutional neural network for model learning and training. The experimental results show that the proposed algorithm is fast in feature extraction, taking only 0.01s, and the fatigue detection model has good recognition accuracy and generalisation ability, with an accuracy rate of 93.52%. The proposed algorithm not only retains the ability to characterise image texture changes, but also effectively reduces feature redundancy, providing a feasible method for the recognition of driver fatigue states.

     

/

返回文章
返回