• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
王健聪, 杨海燕, 刘书宁. 时空记忆引导边缘学习的视频异常检测算法[J]. 桂林电子科技大学学报, 2025, 45(1): 33-40. DOI: 10.16725/j.1673-808X.2022230
引用本文: 王健聪, 杨海燕, 刘书宁. 时空记忆引导边缘学习的视频异常检测算法[J]. 桂林电子科技大学学报, 2025, 45(1): 33-40. DOI: 10.16725/j.1673-808X.2022230
WANG Jiancong, YANG Haiyan, LIU Shuning. Video abnormal detection algorithm based on apatio-temporal memory guided edge learning[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 33-40. DOI: 10.16725/j.1673-808X.2022230
Citation: WANG Jiancong, YANG Haiyan, LIU Shuning. Video abnormal detection algorithm based on apatio-temporal memory guided edge learning[J]. Journal of Guilin University of Electronic Technology, 2025, 45(1): 33-40. DOI: 10.16725/j.1673-808X.2022230

时空记忆引导边缘学习的视频异常检测算法

Video abnormal detection algorithm based on apatio-temporal memory guided edge learning

  • 摘要: 针对目前用于视频异常检测的神经网络模型存储能力较差,导致特征信息容易丢失的问题,提出时空记忆模块(Conv LSTM-SMM),以弥补神经网络存储能力不足,并将其应用于基于深度学习框架的视频异常检测。Conv LSTM-SMM由Conv LSTM和SMM组成,将Conv LSTM保存的特征向量通过查询特征不断更新记忆网络中的特征参数,并将更新过的特征参数与查询特征进行匹配存储,从而获得新的特征参数,以增强网络的时空特征。同时引入边缘学习,以增加正常模式与异常模式样本间的差距,用SMM引导边缘学习,并将其应用于基于编解码的深度学习方式的视频异常检测。Conv LSTM-SMM提高了异常检测系统对特征信息的存储能力,有利于提升检测信息的完整性、准确性,而边缘学习则加大了正常数据与异常数据的特征差距,二者结合为视频异常检测系统检测精度的提升做铺垫。实验验证部分在目前最具挑战性的公开数据集(Avenue、ShanghaiTech)上进行,实验结果表明,时空记忆引导边缘学习的视频异常检测算法使视频异常检出率得到提升,检测性能优越。

     

    Abstract: The storage capacity of the neural network model used for video anomaly detection is low, which leads to the lack of spatio-temporal information of feature parameter. Aiming at the research of the memory power of neural network, the Conv LSTM-spatio-temporal memory module (Conv LSTM-SMM) to compensate for the lack of storage capacity of neural network was proposed and applied to video anomaly detection based on the deep learning framework. The designed Conv LSTM-SMM consisted of Conv LSTM and SMM. The feature vectors saved by Conv LSTM were continuously updated and stored in the memory network by querying features, and the updated feature parameters were matched and stored with the query features to obtain new feature parameters to enhance the spatiotemporal features of the network. At the same time, edge learning was introduced to increase the distance between normal samples and abnormal samples. And SMM was used to guide edge learning, which was applied to video anomaly detection based on deep learning. Conv LSTM-SMM improves the memory power of feature information for anomaly detection system, which is beneficial to the integrity and accuracy of detected information. Edge learning enlarges the feature gap between normal data and abnormal data, and the combination of the two methods paves the way for obtaining high detection accuracy of video anomaly detection system. The experimental part was carried out on the most challenging public datasets (Avenue, ShanghaiTech) at present. The experimental results show that the designed video anomaly detection algorithm based on Spatio-temporal memory guided edge learning has improved the detection rate of video anomaly, and the detection performance is superior.

     

/

返回文章
返回