• 中国期刊全文数据库
  • 中国学术期刊综合评价数据库
  • 中国科技论文与引文数据库
  • 中国核心期刊(遴选)数据库
徐智, 杜玉, 赵龙阳, 等. 一种改进O2U网络的带噪声标签图像分类方法[J]. 桂林电子科技大学学报, 2024, 44(6): 585-591. DOI: 10.16725/j.1673-808X.202220
引用本文: 徐智, 杜玉, 赵龙阳, 等. 一种改进O2U网络的带噪声标签图像分类方法[J]. 桂林电子科技大学学报, 2024, 44(6): 585-591. DOI: 10.16725/j.1673-808X.202220
XU Zhi, DU Yu, ZHAO Longyang, et al. Image classification method with noisy labels based on improved O2U-Net[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 585-591. DOI: 10.16725/j.1673-808X.202220
Citation: XU Zhi, DU Yu, ZHAO Longyang, et al. Image classification method with noisy labels based on improved O2U-Net[J]. Journal of Guilin University of Electronic Technology, 2024, 44(6): 585-591. DOI: 10.16725/j.1673-808X.202220

一种改进O2U网络的带噪声标签图像分类方法

Image classification method with noisy labels based on improved O2U-Net

  • 摘要: 近年来,带噪声标签的图像分类算法的研究受到学界的广泛关注,其中O2U网络是一种利用噪声标签样本在过拟合与欠拟合2种状态下损失值表现不同这一特性而设计的去噪声标签学习框架,但是该方法面临着噪声标签样本清除不彻底的问题。为解决该问题,提出了一种基于O2U网络改进的带噪声标签图像分类方法。通过修改去噪框架的部分损失函数,使得网络在去噪后的数据集上具有鲁棒性,降低了O2U网络清除噪声标签样本不干净带来的影响。实验结果表明,相比于直接使用O2U网络,提出的鲁棒损失函数与去噪框架结合的方法在MNIST、CIFAR-10和CIFAR-100数据集上均能提升分类效果。总结标签噪声率与噪声分布对分类的影响,表明分类效果由噪声率和噪声分布共同决定。

     

    Abstract: In recent years, the research on image classification algorithms with noise labels has attracted wide attention in the academic circle. Overfitting To Underfitting(O2U) network is a learning framework for removing noise labels based on the different loss values of noise label samples in Overfitting and Underfitting states. However, this method faces the risk of incomplete clearance of noise label samples. An improved image classification method with noisy labels based on O2U-Net was proposed. By modifying part of the loss function of the denoising frame, the network was robust in the denoised data set, and the influence of O2U-Net on removing unclean noise label samples was reduced. Experimental results show that compared with O2U-Net, the proposed robust loss function combined with denoising framework can improve the classification effect on MNIST, CIFAR-10 and CIFAR-100 data sets. The effects of tag noise rate and noise distribution on classification are summarized. The experiment shows that the classification effect is determined by the noise rate and noise distribution.

     

/

返回文章
返回